
www.manaraa.com

Multistage programming support in CLI

G. Attardi and A. Cisternino

Abstract: Execution environments such as CLR and JVM provide many features needed by multi-
stage programming languages, though there is no explicit support for them. Besides, staged
computations are widely used in areas such as Web programming and generative programming.
In the paper the authors present a possible CLR extension (which can also be ported to JVM) to
provide support for multi-stage languages. The extension is based on CodeBricks – a framework
for run-time code generation which allows expressing homogenous transformations of intermediate
language as a composition of methods. They discuss the code generation strategy adopted by the
framework and how an extension to CLR may improve the performance of multi-stage applications,
although CodeBricks can also be implemented using the standard CLR. An informal discussion of
how to translate MetaML staging annotations into CodeBricks is provided with a simple example.

1 Introduction

Multistage programming is an emerging paradigm whose
ultimate goal is to express programs that are evaluated in
stages rather than in a single execution step. The aim of
delaying computations is to exploit the amount of
information available to a program before its final
execution, avoiding unnecessary computation.

Extensions to programming languages such as ML have
been proposed to support annotations indicating when
portions of a program should be executed. MetaML [1]
employed a notation derived from the LISP quasi-quotation
[2], though in this case the compiler is able to type-check the
program. A simple example [3] of a MetaML program is the
following:

let even n ¼ ðn mod 2Þ ¼ 0
square x ¼ x � x
rec power n x ¼
if n ¼ 0 then lift 1
else if even n
then <square � ðpower ðn=2Þ xÞ>
else <� x � �ðpower ðn� 1Þ xÞ>

power72 ¼ run<fun x�>� ðpower 72 <x>Þ>
in power72 2

The program specialises the power function for a given
exponent. Four annotations have been added to ML to
express multi-stage computations [4]:

–Brackets (‘<’ and ‘>’) are inserted around any expression
to delay its computation; another way to think about
bracketed expressions is as code values representing the
quoted expression.
–Escape (‘�’) is used to ‘splice-in’ the result of an
expression (that should be of code type) in the context of a
bracketed term.

–Run allows execution of a code fragment, removing
brackets and evaluating the resulting expression.
–Lift allows lifting a value into a code value that, evaluated
under run, produces the same ground value.

An execution stage is represented by an application of
operator run. Because brackets can be nested, a single
expression may require multiple applications of run to
reduce a term. Each application of run is said to be an
execution stage of the program.

MetaML is not the only programming language that
allows expressing staged computations: interpreted
languages can express staged programs using the eval
function; macro systems like the one provided by LISP can
also be used for staging. Although many of these do not
provide any specific annotation to express staging; it seems
that the notation proposed by MetaML is general enough for
this class of programs.

1.1 Problem

Despite staged systems that are already employed in key
technologies such as Web programming (ASP, PHP), there
is no support for support of these languages in execution
environments like Microsoft CLR [5] or Sun JVM [6]. More
in general, these execution environments do not provide any
support to languages with meta-programming facilities even
though they provide many of the elements needed.

Besides this lack of support these environments still
provide many mechanisms to do runtime code generation as
well as reflection mechanisms to introspect programs to
some extent. Nevertheless, staged computations may benefit
from an explicit support from the execution environments.
In particular, program transformations should be homo-
genous [7], so that they can be iterated across several stages.

Code manipulation at intermediate language level looks
promising for staging because it is homogeneous. Moreover,
Common Language Runtime (CLR) provides explicit
support for generation of IL at runtime, and also within
JVM bytecode can be generated at runtime [8]. Bytecode
has already been used for implementing MetaOCaml [9], an
extension of OCaml with multi-staging, though the OCaml
virtual machine provides an instruction set significantly
different from MSIL or Java bytecode.

One may ask why it is worth supporting multi-stage
programs in CLR. First of all a main goal of CLR is to

q IEE, 2003

IEE Proceedings online no. 20030990

doi: 10.1049/ip-sen:20030990

The authors are with the Dipartimento di Informatica, via Buonarroti, 2,
I-56127, Pisa, Italy

Paper received 29th June 2003

IEE Proc.-Softw., Vol. 150, No. 5, October 2003 275

www.manaraa.com

support many programming languages, including those with
stage annotations. A more compelling reason is that,
nowadays, even programs without staging annotations are
often multi-stage. Many programs manipulate a program
before the runtime: preprocessors, parser generators,
installers, verifiers and loaders are but a few examples.

What kind of support should an execution environment
such as CLR provide to programming languages supporting
multi-staging annotations? Is it possible to provide a general
and efficient implementation of this support?

1.2 Contributions

In this paper we propose an extension to CLR to support
multi-stage programming languages. The core of our
proposal is based on a runtime code generator that allows
code generation at intermediate language level, though the
programmer perceives the transformation at language level.
The code generator allows expressing homogeneous
program transformation, used to express staged
computations.

Although the whole system can be implemented on top of
CLR, exploiting the code generation facilities already
provided, the overall performance of the approach can be
greatly improved by making aware the execution engine of
it. The code generator provides a means for generating
methods by composing a body of other methods; it is a pity
to have to bake a class in order to be able to get the code
running; in addition, the lifetime of generated code is, by
design, bound to the application domain wasting either
memory or execution speed [Note 1].

We illustrate a general approach to composition of
method bodies possessing the interesting property that the
execution of composed code is equivalent to a particular
execution of the methods used to build it. The code
composition is exposed as an extension of the reflection
facilities of the runtime.

A less obvious, though important, contribution of this
paper is the observation about the role played by metadata
and intermediate language. The nature of execution
environments, such as CLR, that try to enforce type safety
at runtime and provide dynamic loading facilities implies a
need for a lot of information in binary files. Moreover,
programming languages have great benefits in exposing the
types of the runtime into the language (mainly for code
reuse). We can exploit this richness to encode into binaries
information not intended for the execution environment, but
used by other programs that interprets binaries with
purposes other than mere execution. If the encoding is
done using the semantic objects shared among languages
and the execution environment (i.e. types, methods, fields
and so on), the programmer would perceive it as if a tool
operates on the program source rather than its compiled
form.

2 A programming illusion

CLR and JVM are execution systems whose execution is
type driven. Programs are expressed using an intermediate
language for a (virtual) stack based machine. The execution
environment type checks types before their execution
enforcing type safety. Types are loaded dynamically when
needed.

We note that the adoption of an intermediate language is a
consequence of the constraint imposing code verifiability.
Moreover dynamic loading, together with a ‘type aware
runtime’ encourage code reuse in the form of libraries of
types like those in the base class library providing an ever
increasing amount of basic functionalities (networking,
security, windowing, etc.). This reuse is possible only if
programming languages targeting these execution environ-
ments expose runtime types as a language abstraction. For
instance, the common language infrastructure (CLI) [5]
defines a set of rules known as Common Type System
(CTS), whose aim is to impose additional constraints on
type definitions so that types can be used across different
languages.

The amount of semantic abstractions shared between
programming languages and the runtime has been, for
compiled languages, quite small, even in programming
languages such as OCaml, where the virtual machine [10]
provides abstractions far from the language. Besides, Java
bytecode and MSIL retain so much information that types,
method calls, fields, and many others are still present in the
binary. Thus if we encode information into binaries in terms
of these elements present in both the runtime and
programming languages the programmer would have the
impression that he is expressing something at language level
though a tool may operate at binary level.

In this context bytecode manipulation becomes more than
a technical trick to achieve some magic, and it has already
been exploited in the context of runtime code specialisation
[11] and to weave aspects into code [12]. In our case we rely
on reflection and on intermediate language patterns in
CodeBricks, a library for runtime code generation in which
the programmer combines methods having the illusion of
manipulating the source language though the real code
transformation is performed at binary level (Fig. 1).

3 Introduction to CodeBricks

CodeBricks is a framework for code generation that allows
programs to manipulate and generate code at the source
level while the joining and splicing of executable code is
carried out automatically at the intermediate language level.
Herein we briefly describe the abstractions provided by the
framework for runtime code generation. A more detailed
discussion can be found in [13].

The framework is built around the Code type, which
represents the class of code fragments. A code fragment is
formed by three elements:

– an environment containing references to objects associ-
ated with the fragment
– a body of well formed intermediate language instructions
– a signature containing the type of input arguments and of
the returned value of the fragment.

perceived
transformation

programming
language

compile

intermediate
language

real
transformation

Fig. 1 In CodeBricks code generation is expressed a method
combination providing the illusion that the code manipulation is
performed at source level

Note 1: Types and related code can be unloaded only with the application
domain containing it. It is possible to allocate application domains on the
fly, though cross-domain method invocations involve marshalling of
parameters with additional overhead.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003276

www.manaraa.com

Code fragments can be obtained from methods as in the
following example:

public static int add(int i, int j) {
return iþ j;

}
== . . .
Code codeOfAdd¼

new Code (typeof(MyClass).
GetMethod (“add”));

In this example codeOfAdd is a fragment with an empty
environment, a body and a signature that are the same of
method add.

Fragments can be combined together by means of a Bind
operator which produces new fragments. The code fragment
resulting from a Bind operation represents a partial
application of the fragment source of binding. Consider
the following example:

Code inc ¼ codeOfAdd:Bindð1;new FreeVarðÞÞ;

In this example inc is a new code fragment representing
the partial application of 1 to the code fragment correspond-
ing to the add method [Note 2]. The second argument is left
unapplied, using as a placeholder the object of type
FreeVar. The signature associated with inc has only an
input argument because the first argument of codeOfAdd
has been bound to the value 1. Assuming that code
fragments were directly executables, our intuition would
expect that the following equivalence holds:

incðxÞ ¼¼ codeOfAddð1;xÞ

From the semantics of partial application it follows that

add3ðx;y;zÞ ¼¼ codeOfAddðcodeOfAddðx;yÞ;zÞ

where

Code add3 ¼ codeOfAdd:Bindð
codeOfAdd:Bindðnew FreeVarðÞ;

new FreeVarðÞÞ;
new FreeVar());

We note that the composition of code fragments can be type
checked during binding, ensuring that the values used to
bind arguments are compatible with those indicated in the
signature associated with the fragment used as the bind
target.

Within CLR it is possible to express higher order values
using delegates [Note 3]: a delegate represents a class of
methods with the same signature. A method can accept a
delegate as an argument and call the method it represents
inside its body. An example of delegate use is the following:

delegate object F(object o);

public static ArrayList
MapCar(F f, ArrayList lÞ f
ArrayList ret ¼ new ArrayListðÞ;
foreach (object o in l)
ret.Add(f(o));

return ret;
}

Code fragments represent higher order values; thus it seems
natural to allow splice-in of the body of a fragment in place
of calls to an input argument of type delegate. Suppose we
want just to clone all the object of a list; we may generate
such a code fragment as follows:

public static object CloneObject(object o)
{
return o.Clone();

}
== . . .
Code map ¼ new Code(typeof(MyClass).
GetMethod(“MapCar”));

Code clone ¼
new Code(typeof(MyClass).GetMethod

(“CloneObject”));
Code mapclone ¼ map.Bind(new Splice
(clone),

new FreeVar());

In this case we used the Splice object to indicate to Bind
that clone should be considered a higher order value to
splice in place of the calls to the delegate argument of
method MapCar. Again, Bind is able to type check that the
signature of delegate F is compatible with the signature of
clone. We expect the body of mapclone would be such
that

mapclone(l) ¼¼ map(clone, l) ¼¼ MapCar
ðnewFðCloneObjectÞ;lÞ

Code fragments simply represent code values: they are not
directly executable. Moreover, the runtime is built around
the notion of type, and fragments represent functions. We
transform code fragments into delegates for execution. The
Code class provides a MakeDelegatmethod that builds a
delegate from a fragment.

delegate int MyDel(int i);
MyDel f = (MyDel) inc.MakeDelegate
(typeof (MyDel));

int two ¼ f(1);

Notice that we should specify the type of the delegate in the
conversion. This is because there can be many delegate
types for the same signature.

How the conversion of a code fragment into a delegate is
performed depends on the implementation and will be
discussed later; however, we found that the explicit
conversion of code fragments into delegates offers a good
integration of code values into the existing type system
without requiring the design of the runtime. Moreover the
implementation under this assumption can be more efficient
than assuming that code fragments were implicitly execu-
table objects: the runtime may delay code generation until
the very last moment because it is known when a code
fragment should be made executable.

4 Composing IL

In the preceding Section we introduced the use of the
CodeBricks library and how it can be used for code
generation, combining code fragments that, in the end, come
from the precompiled bodies of methods. We have also
assumed that the generated code is a partial application,
providing a means to the programmer of controlling its
behaviour. But does there exist a general transformation of
bytecode that is suitable for implementing Bind operator?

In this section we describe the set of IL transformation
schemes adopted by CodeBricks to generate the code. In [14]

Note 2: We use the expression ‘partial application’ rather than ‘partial
evaluation’ because the code generator does not partially evaluate the
generated code: binding both arguments of codeOfAdd to 1 would result
in the code that adds 1 to 1 rather than the constant 2.

Note 3: As pointed out in [8], delegates can also be expressed in Java as a
particular case of interface.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003 277

www.manaraa.com

a formal model of this transformation is introduced; it is
proven that only type-safe code can be generated [Note 4]
and that the semantics of generated code is one of the partial
applications described in the preceding Section.

4.1 Structure of bind operator

Bind is a polymorphic operator performing runtime type
checking to ensure that code fragments are correctly
combined together. The real signature of the operator is
the following:

public Code Bind(params object[] args) f. . .g
The C# params keyword authorises the compiler into
silently turning a list of arguments into an array of objects
before calling the method. With this trick we obtained, at
least for C# programs, a syntax recalling the standard
method invocation.

The first step of binding is type-checking: the signature of
the code fragment target of binding is compared with the
content of the arguments passed into the array of objects. A
new signature is generated for the result fragment: the return
type is the same as the target; arguments bound to instances
of FreeVar are copied into the new signature in the same
order because they are left unbound. For all the other
arguments passed to bind they are type checked as follows
(assuming T is the expected type present in the target’s
signature):

– the type A of the argument is such that A <: T
– the type of the argument is Code, the return value in its
signature is A, and A <: T
– the type of the argument is Splice, T is a delegate type
with the same signature as the code fragment contained into
the argument.

After type checking, the body of the new code fragment is
filled with the body of binding’s target. Intermediate
instructions are just copied unless they are instructions
involving arguments or local variables (i.e. ldarg,
ldarga, starg, ldloc, stloc…). When an instruction
involving an input argument or a local variable is found the
instructions added to the new body depend on the index of
the instruction argument. Arguments may be mapped to
locals (initialised with the appropriate value, as discussed
later). Instructions involving local variables may require a
different index for the variable they are referring; this
renaming is necessary when bodies of different code
fragments are merged together.

4.2 Arguments bound to values

If an input argument is bound to a value, as we did in the
increment example, we should replace the instructions
referring to that argument with instructions that go to fetch
and store the value in the appropriate site.

We recall that a code fragment is characterised by an
environment which is responsible for containing the values
bound with Bind. We assume that the environment is
implemented as an array of Object, although it is not the
only possible choice. Under this hypothesis we transform
instructions reported in Table 1 (assuming that I is the index
of the input argument and j the index of the value into the
environment):

Every access to the argument is replaced with a
corresponding access to the environment. If the environment

is implemented as an array we should cast values to the
appropriate type after loading the value from the array,
which is silently passed as the first argument of the code
fragment. Otherwise the resulting code would be
unverifiable.

Our current implementation optimises the special case in
which an argument is used in a read-only fashion inside the
method body and its type is native (i.e. number or string): in
this case the value is loaded with a single instruction whose
argument is the value itself (or a metadata token for a
string); see Table 2.

4.3 Argument bound to a code fragment

Code fragments can be used instead of values given that the
return type of the fragment is compatible with the expected
type of the input argument. In this case a new local variable
is introduced. The body of the code fragment is made the
prefix of the resulting body and local variables are renamed
in order to avoid capturing.

Instead of the instruction ret a stloc is generated in
the prefixed code and all the instructions referring to the
argument in the target body are replaced with instructions
referring the local variable.

Applying this strategy the code generated for add3
would be the following:

Prefix
without
ret

ldarg.0
ldarg.1
add
stloc.0

ldloc.0
ldarg.2
add
ret

Target of
Bind

Table 1

ldarg i ldarg.0

ldc.i4 j

ldelem.i4 // It depends on the type!

// Type conversion instruction needed here:

// either unboxing or type cast

ldarga i ldarg.0

ldc.i4 j

ldelema

starg i ldarg.0

ldc.i4 j

stelem.i4 // It depends on the type!

Table 2: The body of method add and the generated code
for the increment function using the general 1 and the
optimised 2 approaches

add inc1 inc2

ldarg.0 ldarg.0 ldc.i4.1

ldarg.1 ldc.i4.0 ldarg.0

add ldelem.ref add

ret unbox ret

System.Int32

ldind.i4

ldarg.1

add

ret

Note 4: under the hypothesis that the bodies of methods involved in the
code generation are type-safe.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003278

www.manaraa.com

In this case the original body of add has been prefixed with
another copy of it (it is the result of codeOfAdd.
Bind(codeOfAdd, new FreeVar()). The result of
the first add is stored in a local variable and then used in the
code of add instead of the first argument. We note that the
number of arguments of the resulting fragment is increased
by one and the arguments have been renamed accordingly.

In general, if an open code fragment (i.e. with input
arguments) is used in a binding, its arguments are lifted into
the signature of the resulting code fragment replacing the
bound argument in the original signature. The process of
lifting arguments is very similar to lambda lifting [15],
where code fragments play the role of lambda terms.
Consider the following code fragment:

Code c ¼ codeOfAdd:Bind ðnew FreeVarðÞ;
codeOfSubÞ;

The arguments of c are treated as follows: the first argument
maps to the first argument of the add method and the
remaining two are used as arguments for the sub method.

Also in this case our implementation recognises that in
this case the local variable can be avoided generating the
optimal code.

4.4 Splicing code fragments

If a splice operation is requested, the type of the input
argument should be a delegate. In this case the code
fragment bound to the argument should have the same
signature of the delegate type so that we can inline its body
where the delegate is invoked. (See Fig. 2) it is worth noting
that the transformation of IL is not limited to a single
instruction.

Here we sketch a simple implementation of the
transformation, although it cannot deal with nested delegate
invocations (a more general approach can be adopted,
though, would make the example harder to follow).

The pattern of a delegate invocation (assuming i is the
index of the ith argument of type delegate) is the following:

ldarg i
// instructions that load arguments
callvirt Invoke // Invocationof the
delegate

The strategy for replacing the method invocation with the
body of the bound code fragment is the following:

– the block of instructions responsible for loading
arguments (except for ldarg i) are preserved
– a local variable of the appropriate type for each argument
is introduced
– the callvirt instruction is replaced by a stloc
instruction for each argument
– the body of the code fragment is appended and fixed to
ensure that the instructions dealing with arguments refer to
the appropriate local variable.

Often arguments passed to a method call are stored in local
variables (or input arguments): in this case it is possible to

avoid the introduction of the local variables reducing the
code size and improving performance.

We note that with splice-in it is trivial to write code that
behaves like fixing an argument to a code fragment (the case
discussed in the preceding Section). Nevertheless,
CodeBricks has the chance of performing better
optimisations if both transformations are possible.

5 Making CLR aware of code fragments

We did the first implementation of CodeBricks on the
commercial version of CLR. Thus we have generated
code dynamically with the classes provided in the
Reflection.Emit namespace: for each code fragment
we emit a new type containing a method whose body
corresponds to the one of the fragment. The environment is
stored in the class and a standard delegate to the method is
returned when the fragment should be turned into an
executable entity.

As discussed in [13] we have compared performances of
the hand-written compiler for regular expressions included
with SSCLI [16] with an equivalent program based on
CodeBricks. The code generated using CodeBricks has
produced results close to the hand-written implementation.
However, in our preliminary benchmark we were testing the
performance of a single code fragment.

The main drawback in using Reflection.Emit is that
the approach does not scale very well when a large number
of different code fragments should be executed. Unfortu-
nately, in program specialisation this is often the case: for
instance, the power function can be specialised for each
possible value of its exponent.

Moreover, in runtime code generation it is often the case
that generated code is needed for a small amount of time,
and then could be discarded, freeing memory. Also, type
driven execution tends to retain loaded code into memory.
SSCLI provides a form of garbage collection known as code
pitching [17] for code generated by JIT compiler; none-
theless the CLR still retains all the data structures of loaded
types (for instance EEClassand MethodTable). Without a
modified runtime the only way to free the memory used for
generated code is to unload the application domain, at the
price of having to produce the code into a separate domain
where the method invocation is more expensive due to
required marshalling of arguments.

We believe that the execution environment can be
modified in the following areas to improve the support to
code fragments:

– methods generation without the need to generate a type
for each method
– support for closures: the environment should be
associated with the corresponding executable code fragment
– garbage collection of unnecessary code fragments
– debugging of runtime generated code
– reflection interface: method bodies can be exposed as
code fragments from MethodInfo.

We briefly outline the impact of the modifications on the
SSCLI [Note 5].

5.1 Method generation

As already discussed, the design of CodeBricks introduces
code fragments that are rendered as delegates in order to be

ldarg i
// load arguments
callvirt Invoke

// load arguments
stloc k
stloc k+1
...
stloc k+n
// Body to be spliced

Fig. 2 A simple schema for splicing code fragments into delegate
invocations

Note 5: Our wish was to include some early experiment on changing SSCLI
to support CodeBricks. Unfortunately the hard disk of one of the authors
crashed, causing the loss of part of the work.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003 279

www.manaraa.com

executable. Because of this, the type system is left
unchanged by the introduction of Code type because the
delegate object hides the fact that a code fragment is a
method without an associate type.

In the implementation made on top of CLR we use
Reflection.Emit to generate a type with a method
containing the code fragment in it. Then we build the
delegate on an instance of that type. A better solution would
be to allocate an EEClass inside each application domain
(the descriptor of a loaded type within the runtime) with a
large method table. Each time we should convert a code
fragment into a delegate a new method is generated in this
private class that is kept open on purpose.

With this change the creation of an executable code
fragment would be faster than using the Emit package.
Moreover, our implementation of CodeBricks has been
designed to generate the bytes so that the JIT can directly
use it without having to call a method for each instruction.

5.2 Support for closures

During the binding process it is possible to bind objects to
arguments. These objects are associated with the code
fragment within the environment, i.e. in its simplest form, an
array. The body of a code fragment requires the values
stored into the environment for execution.

Delegates seem to be the right type to represent a method
with its environment; unfortunately the delegate specifica-
tion only allows to link a method with an instance of the
class to which belongs. If the runtime is aware of the
Codetype, the constraint can be slightly relaxed, allowing
the building of delegates using code fragments: the
implementation would ensure that the environment of a
code fragment would be passed to the generated method as
if it is this pointer.

This small change would not break any existing code nor
change the overall model of the type system.

5.3 Collection of code fragments

By definition a code fragment can be executed only when
converted into a delegate. Thus the lifetime of the delegate
object coincides with the time span for which a generated
code is needed. We can exploit this fact to make aware the
garbage collector of the delegates built around a code
fragment.

Our goal is to collect the memory of a compiled code
fragment that is not needed anymore. This can easily be
achieved if the runtime is aware of the Code type: when a
code fragment is turned into a delegate the pre-stub [Note 6]
for the generated method can retain its origin so that the
code generated by the JIT compiler can be stored in a
different heap. When the delegate object is collected we
know that the code is not required anymore and the collector
can reclaim the memory used for it.

We use a weak reference in the code fragment to
reference its executable version (once generated) in order to
decouple the lifetime of the two objects.

5.4 Debugging of the generated code

A major problem in runtime generation code is its
debugging. In systems that generate machine code (or
bytecode) there is no chance for the debugger to present any
source code. This fact makes debugging difficult in this kind

of system, and often the only viable solution is to insert a
print instruction in the generated code [Note 7].

It is possible to extend our approach of combining
methods to the debugging information. Thus it is possible
(perhaps disabling some optimisation) to keep track, for
each instruction, of its corresponding instruction in the
source code.

Moreover, because the semantics of the generated code is
the partial application, we can modify the debugger so that it
shows the interpreted version of the application while it is
executing the compiled code. We think that this is a novelty
in the context of runtime code generation.

5.5 Reflection interface

Execution environments such as CLR or JVM provide a rich
set of information about types loaded into the runtime.
Programs may inspect types’ structure, fields and method
signatures. Besides there is no means to get the
method body: this is because the only information about
method body available to the runtime is its bytecode (that is
not really interesting as the source code).

We believe that a method body could be exposed as a
code fragment by the runtime. Although it cannot be
decomposed in single instructions, it can be used to generate
new code, making it useful for the program to have access at
runtime to a representation of method bodies.

Moreover, if code fragments are exposed as a property of
MethodInfo object, then the runtime has the opportunity of
book-keeping which methods could be used in the future for
generating code.

6 Power example revised

It is not difficult to see that code fragments are tightly
related to the bracket operator of MetaML. The splice-in
provided by CodeBricks can be used to obtain the same
effect of MetaML’s tilde operator. When a code fragment is
turned into a delegate and executed we have the same effect
that the run operator has on a bracketed expression in ML.
Finally, it is easy to imagine a method using code fragments
inside that is used to build a new code fragment which
corresponds to a two stages expression.

Thus a MetaML compiler for CLI could rely on
CodeBricks to compile staging annotations. MetaML adopts
a finer grain for deferred code: a single expression can be
deferred, whereas in CodeBricks only methods can be used
to build code fragments. This is not a real issue: every
expression can be turned into a function that is invoked in
the place where the expression should have been. We have
followed this approach to compile the power function
shown in the introduction from MetaML to CodeBricks. We
have used C# instead of IL to show how a MetaML compiler
for .NET could have translated the program:

delegate int IntExp(int i);

class Power {
static
Code one ¼ new CodeðtypeofðPowerÞ:
GetMethodð“One”ÞÞ;

static
Code id ¼ new Codeðtypeof ðPowerÞ:
GetMethodð“Id”ÞÞ;

static

Note 6: The chunk of code responsible for jitting the code associated with a
method.

Note 7: Besides when the code is generated at source level (i.e. with string
manipulation and then executed with eval) this is not an issue, though there
is much more overhead at runtime.

IEE Proc.-Softw., Vol. 150, No. 5, October 2003280

www.manaraa.com

Code sqr ¼ new Code ðtypeofðPowerÞ:
GetMethodð“Sqr”ÞÞ;

static
Code mul ¼ new Code ðtypeofðPowerÞ:
GetMethodð“Mul”ÞÞ;

public static int One(int i) {
return 1;

}
public static int Id(int i) {
return i;

}
public static int Sqr(IntExp f, int x) {
int v ¼ fðxÞ;
return v � v;

}
public static intMul ðIntExp f;IntExp
g;int xÞ f
return fðxÞ � gðxÞ;

}
public static Code Power(int n, Code x) {
if ðn ¼¼ 0Þ return one.Bind(x);
else if ðn ¼¼ 1Þ return x;
else if ðn%2 ¼¼ 0Þ

return sqr:BindðPowerðn=2;xÞ;
Code:FreeÞ;

else return mul:Bindðx;Powerðn� 1; xÞ;
Code:FreeÞ;

}
public static Code Power(int n) {
return Power(n, id);

}
static public void Main(string[] args){

ððIntExpÞ powerð72Þ :MakeDelegate
ðtypeof ðIntExpÞÞÞ ð2Þ;

}
}

7 Conclusions

We presented an extension to CLR to support programming
languages with multi-stage annotations. The support is
based on code fragments that correspond to delayed
computations. Code fragments can be combined together
by means of Bind operator, which combines sequences of IL
instructions and values so that the generated code is
semantically equivalent to the partial application of its
constituents. We have shown the base transformation we use
for generating code and how a combination of methods
provides the illusion of manipulating source code language
rather than IL.

Although an implementation of CodeBricks for standard
CLR is possible, a runtime aware of CodeBricks would

provide better use of memory and faster code generation
with small changes. This is crucial because, as witnessed by
the power example, even simple meta-programs may
involve several code fragments that may impose a
significant overhead on the runtime.

We showed with a simple example a possible translation
schema of staged annotations from MetaML to CodeBricks.
We believe that the CodeBricks framework is expressive
enough to support multi-stage languages, though further
research is required in this direction.

CodeBricks currently handles only static methods; we
plan to extend it to handle instance methods as well, solving
issues of protection in accessing member fields. We should
also extend the code transformation model to include
exception handling.

8 References

1 Taha, W., and Sheard, T.: ‘Multi-stage programming with explicit
ennotations’. Proc. ACM SIGPLAN Symp. on Partial Evaluation and
Semantic Based Program Manipulations (PEPM)’, Amsterdam, 12–13
July 1997, pp. 203–217

2 Steele, G.L.: ‘Common Lisp: the Language’ (Digital Press, Woburn,
MA, 1990, 2nd edn.)

3 Calcagno, C., Taha, W., Huang, L., and Leroy, X.: ‘Implementing
multi-stage languages using ASTs, Gensym, and Reflection’, Lect.
Notes Comput. Sci., 2830

4 Taha, W.: ‘Multistage programming: its theory and applications’. PhD
thesis, Oregon Graduate Institute of Science and Technology, Available
at ftp://cse.ogi.edu/pub/tech-reports/1999/99-TH-002.ps.gz, accessed
October 2003

5 ECMA 335, ‘Common language infrastructure (CLI)’, http://www.
ecma.ch/ecma1/STAND/ecma-335.htm, accessed October 2003

6 Lindholm, T., and Yellin F.: ‘The Javae Virtual Machine Specifica-
tion’ (Addison-Wesley, Reading, MA, 1999, 2nd edn.)

7 Sheard, T.: ‘Accomplishments and research challenges in meta-
programming’, Lect. Notes Comput. Sci., 2001, 2196, pp. 2–44

8 Sestoft, P.: ‘Runtime code generation with JVM and CLR’, http://www.
dina.dk/~sestoft/rtcg/rtcg.pdf, accessed October 2003

9 Calcagno, C., Taha, W., Huang, L., and Leroy, X.: ‘A bytecode-
compiled, type-safe, multi-stage language’, http://citeseer.nj.nec.com/
460583.html, accessed October 2003

10 ‘OCaml VM’, http://pauillac.inria.fr/~lebotlan/docaml_html/english/,
accessed October 2003

11 Masuhara, H., and Yonezawa, A.: ‘Run-time bytecode specialization: a
portable approach to generating optimized specialized code’. Proc.
Symp. on Programs as Data Objects (PADO), Aarhus, Denmark, 21–23
May 2001, pp. 138–154

12 Tanter, E., Ségura-Devillechaise, M., Noyé, J., and Piquer, J.: Altering
Java semantics via bytecode manipulation, Lect. Notes Comput. Sci.,
2002, 2487, pp. 283–298

13 Attardi, G., Cisternino, A., and Kennedy, A.: ‘Code bricks: code
fragments as building blocks’. Proc. SIGPLAN Workshop on Partial
Evaluation and Semantic-based Program Manipulation (PEPM), San
Diego, CA, USA, 2003, pp. 66–74

14 Cisternino, A.: ‘Multi-stage and Meta-programming support in strongly
typed execution engines’. Phd thesis, TD-5/03, Dipartimento
di Informatica, Universita diPisa, May 2003, available at http://www.
di.unipi.it/phd/tesi/tesi-2003/PhDthesis-Cisternino.ps.gz, accessed
October 2003

15 Fischbach, A., and Hannan, J.: ‘Specification and correctness of lambda
lifting’, Lect. Notes Comput. Sci., 2000, 1924, pp. 108–128

16 ‘Microsoft Shared Source CLI’, http://msdn.microsoft.com/net/sscli,
accessed October 2003

17 Stutz, D., Neward, T., and Shilling, G.: ‘Shared source CLI essentials’
(O’Reilly, Sebastopol, CA, 2003)

IEE Proc.-Softw., Vol. 150, No. 5, October 2003 281

ftp://cse.ogi.edu/pub/tech-reports/1999/99-TH-002.ps.gz
http://www.ecma.ch/ecma1/stand/ecma-335.htm.
http://www.ecma.ch/ecma1/stand/ecma-335.htm.
http://www.dina.dk/~sestoft/rtcg/rtcg.pdf
http://www.dina.dk/~sestoft/rtcg/rtcg.pdf
http://citeseer.nj.nec.com/460583.html.
http://citeseer.nj.nec.com/460583.html.
http://pauillac.inria.fr/~lebotlan/docaml_html/english/
http://w.w.w.di.unipi.it/phd/tesi/tesi-2003/Ph Dthesis-Cisternino.ps.gz.
http://w.w.w.di.unipi.it/phd/tesi/tesi-2003/Ph Dthesis-Cisternino.ps.gz.
http://msdn.microsoft.com/net/sscli.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

